
Motivation & Overview

CVRP

Relaxation

Capacity Inequalities

Solve

LP

Solve

Separation Problem

by NeuralSEP
(Kim et al., 2024)

Test-time Search

• Rounded Capacity Inequality

• Framed Capacity Inequality

Relaxed
optimal solution

𝑥̅

Cutting Plane Method

Machine Learning

u Overall Structure

u Motivation
– Overcome the NP-hard exact separation of RCI/FCI, which limits solver scalability.
– Replace traditional heuristics (CVRPSEP) with an efficient learning-based algorithm,

NeuralSEP.
– Fully leverage the trained model's potential by employing a Test-Time Search (TTS)

technique during inference to enhance the performance.

Employ NeuralSEP as the
separation algorithm
within a cutting plane
method to generate valid
capacity inequalities (cuts)
for the CVRP, further
integrating a Test-Time
Search (TTS) technique.

Test-Time Search in Neural Graph Coarsening Procedures
for the Capacitated Vehicle Routing Problem

COMPUTATIONAL OPTIMIZATION METHODS LAB

Yoonju Sim
KAIST

Hyeonah Kim
Mila

Changhyun Kwon*
KAIST

Experimental Results

Conclusion

Methodology

𝑆!

𝑆"

6

5 7

! = 0 0 21 43 65 7

! = 1

! = 2

! = 3

! = 4

98

! = 5

! = 6

! "\!Depot

! = 1 0 21

43
6

5 7

9

8

)

!!

!"

! = 5 0 21

43

9

8

)

!!# !"#

v We observe the limitations and potential improvements of NeuralSEP based on three
key evaluation metrics.

v We propose a 𝝅-greedy method and the GraphCHiP algorithm to generate not only RCIs
but also FCIs without retraining the model.

v To our knowledge, this is the first learning-based approach to find FCIs.

v The proposed test-time search method can be applied to other learning-based
algorithms that employ iterative graph coarsening.

Set Assignment & UncoarseningNeural Graph Coarsening Procedures

GNN

𝜸 – coarsening

GNN

𝑝! !∈𝒱!𝑝! !∈𝒱"

𝑞#$ = 𝑝#𝑝$ + 1 − 𝑝# 1 − 𝑝$, ∀𝑖, 𝑗 ≠ 0	

𝑆

𝑉\𝑆

(a) Metric D1: Partial Derivative (b) Metric D2: Cosine Similarity (c) Metric D3: Jaccard Coe�cient

Figure 4: Box plots of three metrics over graph sizes

the predicted probabilities for adjacent values of m:

similarity(�(G`(m)),�(G`(m+ 1))) =
�(G`(m)) · �(G`(m+ 1))

k�(G`(m))k · k�(G`(m+ 1))k
, (17)

where �(G`(m)) = {pi}i2V ` represents the predicted probabilities for graph variation G`(m).

The second metric is defined as:

D2 = similarity(�(G`(m)),�(G`(m+ 1))) 8m 2 {0, . . . ,K � 2}, 8` 2 {1, . . . , L}. (18)

Figure 4b shows NeuralSEP consistently produces higher similarity values around 0.9, indicating

that the model’s predictions for adjacent values of m are highly similar.

Finally, we examine whether the similarity observed in initial predictions for adjacent values

of m persists through the coarsening process to a↵ect the final output subsets of NeuralSEP.

After the neural coarsening procedures, we compare the final output subsets S`(m) and S`(m+1)

using the Jaccard coe�cient. The Jaccard coe�cient is a well-established metric for measuring

the similarity between sets, calculated as the size of the intersection divided by the size of

the union of two sets. Higher values indicate greater similarity between sets, with a value of

1 representing identical sets and 0 indicating completely disjoint sets. The Jaccard coe�cient

between adjacent subsets is defined as:

Jaccard(S`(m), S`(m+ 1)) =
|S`(m) \ S`(m+ 1)|

|S`(m) [S`(m+ 1)|
, (19)

and the third metric is defined accordingly:

D3 = Jaccard(S`(m), S`(m+ 1)) 8m 2 {0, . . . ,K � 2}, 8` 2 {1, . . . , L}. (20)

Figure 4c reveals that NeuralSEP produces a higher value for the third metric compared to the

exact method, aligning with our earlier observations of low sensitivity in the model’s predictions

and high cosine similarity. Also, the variance of Jaccard coe�cients becomes smaller as the graph

size increases. Thus, the results suggest that NeuralSEP generates less diverse candidate subsets

compared to the exact method when both approaches handle all cases, including subsets where

no violations are found. Note that NeuralSEP is trained on all outputs from the exact method,

including these no-violation cases.

12

Table 3: Summary of the performance of RCI separation algorithms

Size
CVRPSEP NeuralSEP1 NeuralSEP2 ⇡-NeuralSEP2 + GC

Gap Time/Iter Gap Time/Iter Gap Time/Iter Gap Time/Iter

50 1.970% 0.009 4.151% 0.830 5.250% 0.120 3.679% 0.133
75 2.769% 0.054 5.305% 1.066 5.164% 0.209 4.393% 0.246
100 4.539% 0.145 6.611% 1.440 6.410% 0.378 5.953% 0.394
200 6.280% 2.001 9.214% 3.411 8.314% 1.293 7.683% 1.594
300 7.903% 10.431 10.515% 12.006 10.087% 4.607 8.714% 7.482
400 12.618% 16.936 12.848% 26.714 13.632% 13.518 10.970% 19.850
500 16.357% 16.947 15.413% 41.227 14.826% 26.705 13.429% 39.125
750 25.783% 16.603 22.553% 102.623 22.187% 90.436 20.956% 111.835

1,000 30.408% 23.321 28.777% 161.183 26.434% 139.826 26.136% 159.042

(a) Comparison of optimality gap (b) Comparison of runtime per iteration

Figure 7: Comparison of the performance of RCI separation algorithms

instances with 400 or more customers. The combination of the more e�cient PyG implementa-

tion and our test-time search method allows our approach to improve the dual gap within the

given time limit.

5.2.1 Performance of ⇡-greedy Selection Method

To further investigate the impact of the ⇡-greedy selection method, we analyze its e↵ective-

ness through direct comparison. Table 4 presents a detailed comparison between the original

NeuralSEP and ⇡-NeuralSEP under the same PyG implementation. We evaluate the ⇡-greedy

selection method by examining the average total number of cuts generated, di↵erences in op-

timality gaps, and the number of RCIs. The results demonstrate reduced average optimality

gaps across all instance sizes. Particularly noteworthy improvements are observed in medium

to large instances, ranging from 300 to 750 customers. The number of RCI cuts increases for all

sizes except 75.

To examine how the ⇡-greedy selection method a↵ects each iteration of the cutting plane

algorithm, we analyze the number of RCI cuts generated during iterations for sizes 400 and 500,

where the winning ratio reaches 1.0. Figure 8 presents average performance over normalized

iterations, with dotted lines indicating where sample sizes fall to three or fewer. Generally,

both methods generate substantial cuts during early and middle iteration stages, with values

20

à Find (𝑖, 𝑗) ∈ '𝐸	 that maximizes	 𝑞!"

Calculate 𝑞!" = 𝑝!𝑝" + 1 − 𝑝! 1 − 𝑝" +	𝜋!" , ∀𝑖, 𝑗 ≠ 0	 𝜋!"	~	𝒰(0,0.001)

Problem Definition

(e.g.) a CVRP instance with
 a vehicle capacity of 7
 to serve 9 customers

33

2

4

1

1

1

2
3

Capacity Inequality

minimize 	 (
(0,1)∈4

𝑐01𝑥01

subject	to 	 𝑥 𝛿 𝑖 = 2	 ∀𝑖 ∈ 𝑉5

𝑥 𝛿 𝑆 ≥ 2 𝑟 𝑆 	 ∀𝑆 ⊆ 𝑉5
𝑥01 ≤ 1	 ∀1 ≤ 	𝑖 < 𝑗 ≤ 𝑉
𝑥61 ≤ 2	 ∀𝑗 ∈ 𝑉5
𝑥01 ∈ ℤ7	 ∀𝑗 ∈ 𝑉,

𝑥 𝛿 {0} = 2𝐾

§ Rounded Capacity Inequalities (RCIs) § Framed Capacity Inequalities (FCIs)

𝑥 𝛿 𝑆 ≥ 2 (
!∈$

𝑑!
𝑄 𝑥 𝛿 𝐻 +(

!∈%

𝛿 𝑆! ≥ 	2𝑟(Ω) + 2(
!∈%

𝑑 𝑆!
𝑄

u Capacitated Vehicle Routing Problem

è Find RCIs and FCIs by using test-time search method in neural graph coarsening!

u Neural Graph Coarsening Procedures (Kim et al, 2024)

u Comparison of RCI separation algorithm

u Limitation of NeuralSEP

u Graph Coarsening History based Partitioning (GraphCHiP) algorithm

u Solution: 𝝅-greedy method TTS

TTS

u Performance of test-time search method for RCIs

u Performance of GraphCHiP algorithm for FCIs

– NeuralSEP learns from the optimal solutions of the exact separation
problem, encoding the fractional solution (𝑥̅) and a demand &
vehicle-related parameter as graph features for the input.

– The GNN predicts probabilities for vertex inclusion, which drive an
iterative graph coarsening process to simplify the graph and
determine the final candidate subset (𝑆).

– Check for the RCI violation of these candidate subsets.

Utilize the intermediate records of the graph coarsening to identify the candidate subsets & partitions.

§ Dataset: Evaluation on Randomly Generated CVRP
§ Baseline: CVRPSEP, Original NeuralSEP, NeuralSEP with migrated library
§ Metric: Optimality Gap (%)

We utilize three key metrics (including the Jaccard Coefficient)
to show that NeuralSEP generates highly similar and thus less
diverse subsets than the exact separation method.

GNN?
Vertex feature

Edge feature

ℎ# =
𝑑#
𝑄
,
𝑚
𝐾

ℎ#$	 = 𝑥̅#$
? ?

𝑆(%)

+ 𝜸 – coarsening

(a) Partial Derivative (b) Cosine Similarity (c) Jaccard Coefficient

Although NeuralSEP performs effectively in large-scale instances, we observe an issue:
It finds substantially fewer cuts than the exact separation method, despite being trained to imitate it.

Both the 𝝅	-greedy method and the GraphCHiP
algorithm significantly increase the yield of high-
quality RCI cuts, resulting in a substantial
reduction of the optimality gap.

§ A example of an FCI found by GraphCHiP on ‘X-n153-k22’
instance (𝑄 = 144)

§ Calculate FCI violation

§ The existence of FCI cuts is highly dependent on the
problem structure.

§ As a result, adding FCI results in further reduction of the
optimality gap.

𝑥̅ 𝛿 𝐻 + 𝑥̅ 𝛿 𝑆! + 𝑥̅ 𝛿 𝑆" = 44.0 + 10.5 + 11.19 = 65.69

≱ 2𝑟(Ω) + 2
∑#∈%# 𝑑#
𝑄

+
∑#∈%$ 𝑑#
𝑄

= 2 23 + 5 + 5 = 66

Maximum runtime: 1 hour

𝑆

è Too many capacity inequalities à handled via cutting plane methods!

where 𝐾 is the number of available vehicles to serve all customers

Here, m is the integer-valued parameter in the exact separation problem.

Kim, H., Park, J., & Kwon, C. (2024). A neural separation algorithm for the rounded capacity inequalities.
INFORMS Journal on Computing, 36(4), 987-1005.

For each m ∈ {0, … , 𝐾	 − 1}

