

Test-Time Search in Neural Graph Coarsening Procedures for the Capacitated Vehicle Routing Problem

Yoonju Sim
KAIST

Hyeonah Kim
Mila

Changhyun Kwon*
KAIST

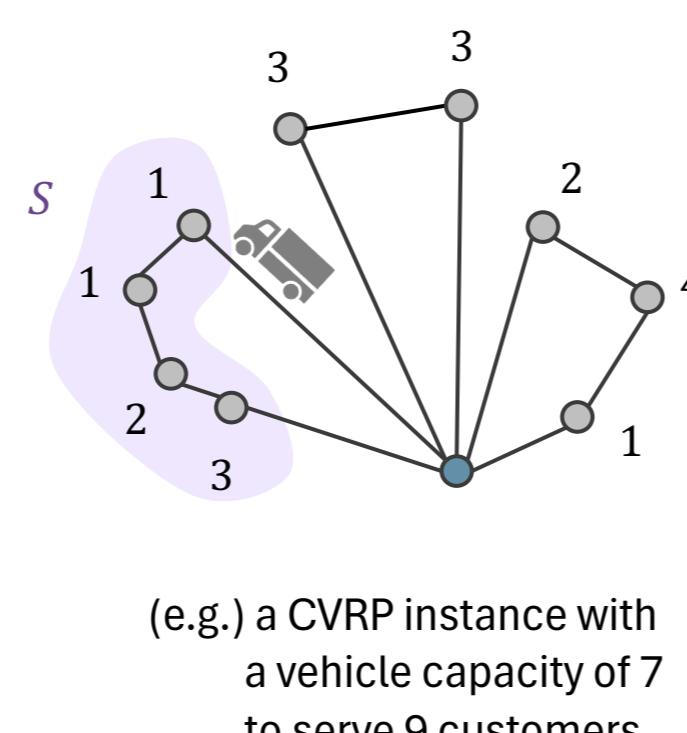
Problem Definition

◆ Capacitated Vehicle Routing Problem

$$\begin{aligned} \text{minimize} \quad & \sum_{(i,j) \in E} c_{ij} x_{ij} \\ \text{subject to} \quad & x(\delta(\{i\})) = 2 \quad \forall i \in V_C \\ & x(\delta(\{0\})) = 2K \\ & x(\delta(S)) \geq 2r(S) \quad \forall S \subseteq V_C \\ & x_{ij} \leq 1 \quad \forall 1 \leq i < j \leq |V| \\ & x_{0j} \leq 2 \quad \forall j \in V_C \\ & x_{ij} \in \mathbb{Z}_+ \quad \forall j \in V, \end{aligned}$$

where K is the number of available vehicles to serve all customers

→ Too many capacity inequalities → handled via cutting plane methods!



(e.g.) a CVRP instance with a vehicle capacity of 7 to serve 9 customers

▪ Rounded Capacity Inequalities (RCIs) ▪ Framed Capacity Inequalities (FCIs)

$$x(\delta(S)) \geq 2 \left\lceil \sum_{i \in S} \frac{d_i}{Q} \right\rceil \quad x(\delta(H)) + \sum_{i \in I} (\delta(S_i)) \geq 2r(\Omega) + 2 \sum_{i \in I} \left\lceil \frac{d(S_i)}{Q} \right\rceil$$

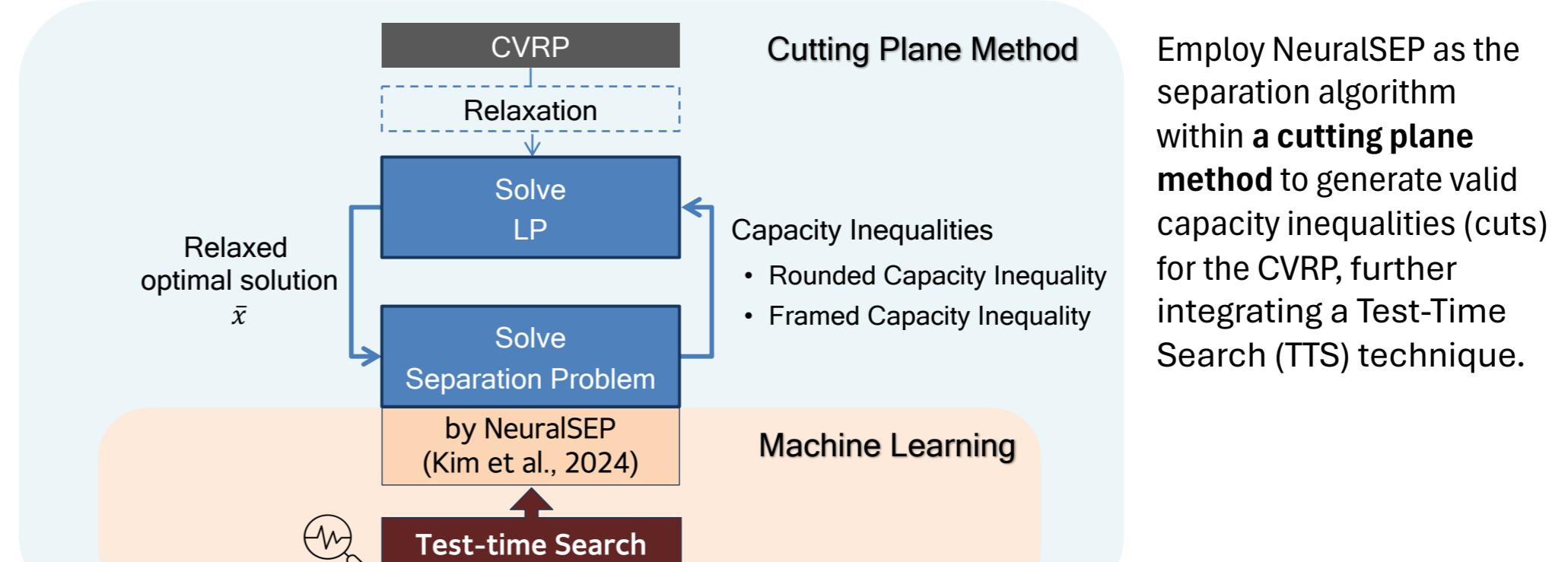
→ Find RCIs and FCIs by using test-time search method in neural graph coarsening!

Motivation & Overview

◆ Motivation

- Overcome the **NP-hard exact separation** of RCI/FCI, which limits solver scalability.
- Replace traditional heuristics (CVRPSEP) with an efficient learning-based algorithm, **NeuralSEP**.
- Fully leverage the trained model's potential by employing a **Test-Time Search (TTS)** technique during inference to **enhance the performance**.

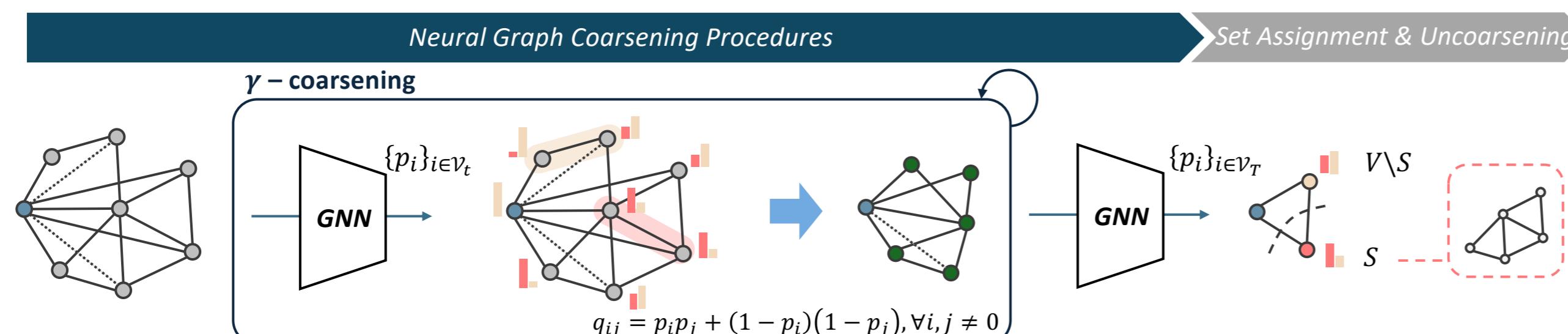
◆ Overall Structure



Kim, H., Park, J., & Kwon, C. (2024). A neural separation algorithm for the rounded capacity inequalities. *INFORMS Journal on Computing*, 36(4), 987-1005.

Methodology

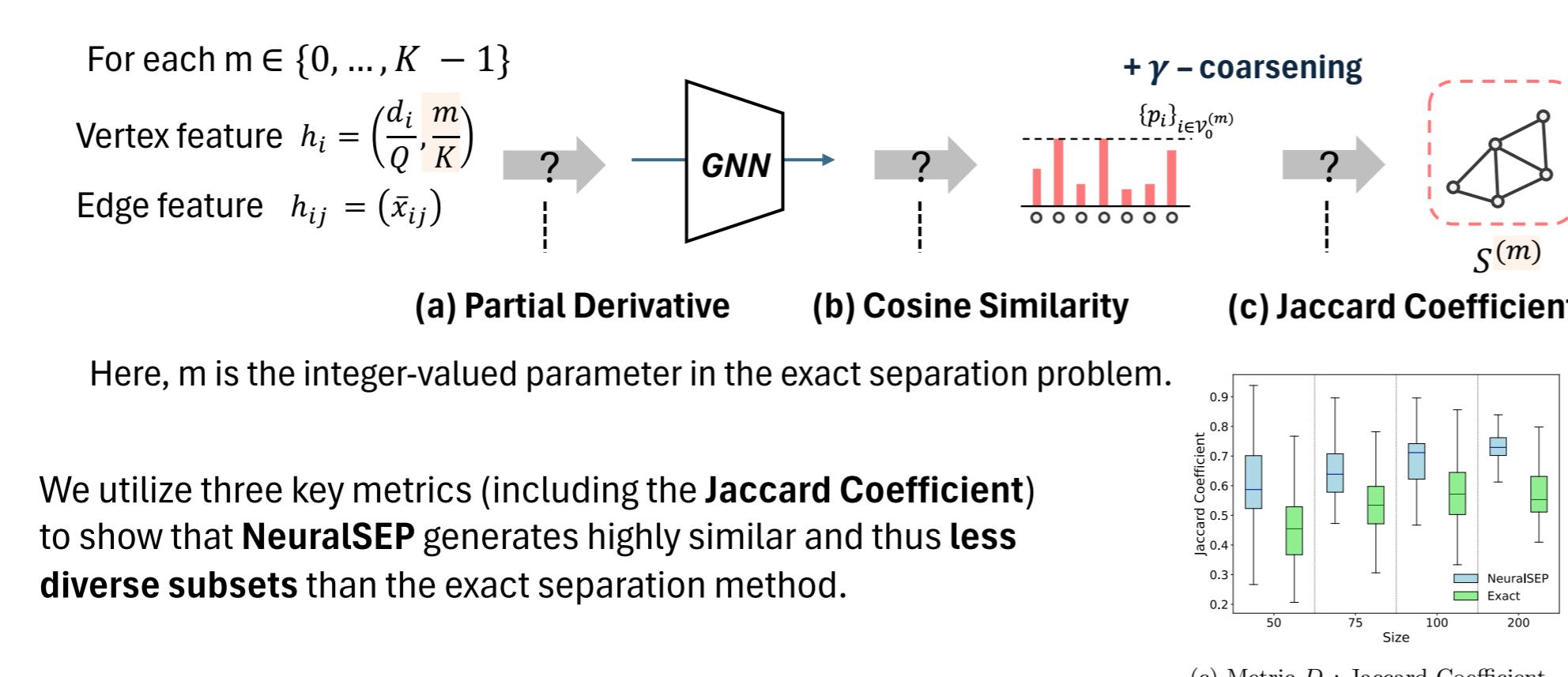
◆ Neural Graph Coarsening Procedures (Kim et al, 2024)



- NeuralSEP** learns from the optimal solutions of the **exact separation problem**, encoding the fractional solution (\bar{x}) and a demand & vehicle-related parameter as graph features for the input.
- The GNN predicts probabilities for **vertex inclusion**, which drive an iterative graph coarsening process to simplify the graph and determine the final **candidate subset (S)**.
- Check for the RCI violation** of these candidate subsets.

◆ Limitation of NeuralSEP

Although NeuralSEP performs effectively in large-scale instances, we observe an issue: It finds substantially **fewer** cuts than the exact separation method, despite being trained to **imitate** it.



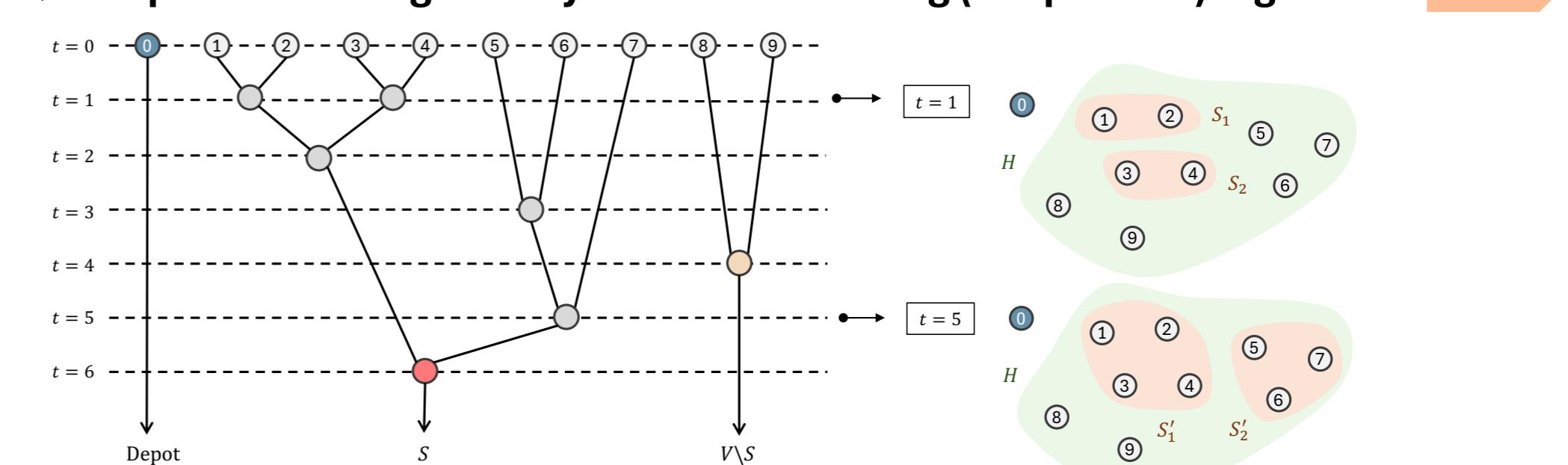
Here, m is the integer-valued parameter in the exact separation problem.

We utilize three key metrics (including the **Jaccard Coefficient**) to show that **NeuralSEP** generates highly similar and thus **less diverse subsets** than the exact separation method.

◆ Solution: π -greedy method

Calculate $q_{ij} = p_i p_j + (1 - p_i)(1 - p_j) + \pi_{ij}, \quad \forall i, j \neq 0 \quad \pi_{ij} \sim \mathcal{U}(0, 0.001)$
→ Find $(i, j) \in \bar{E}$ that maximizes q_{ij}

◆ Graph Coarsening History based Partitioning (GraphCHiP) algorithm



Utilize the intermediate records of the **graph coarsening** to identify the candidate subsets & partitions.

Experimental Results

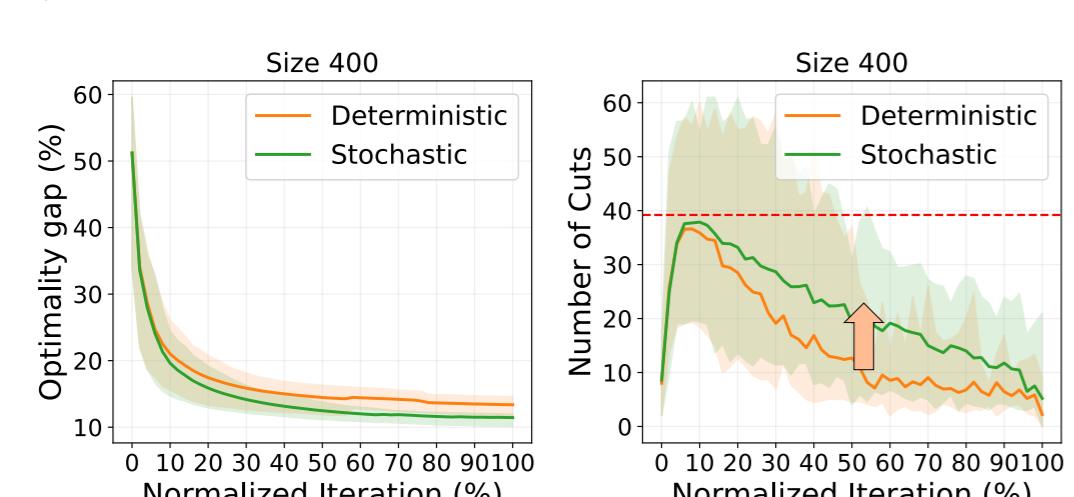
◆ Comparison of RCI separation algorithm

- Dataset: Evaluation on Randomly Generated CVRP
- Baseline: CVRPSEP, Original NeuralSEP, NeuralSEP with migrated library
- Metric: Optimality Gap (%)

Size	CVRPSEP		NeuralSEP ₁		NeuralSEP ₂		π -NeuralSEP ₂ + GC	
	Gap	Time/Iter	Gap	Time/Iter	Gap	Time/Iter	Gap	Time/Iter
50	1.970%	0.009	4.151%	0.830	5.250%	0.120	3.679%	0.133
75	2.769%	0.054	5.305%	1.066	5.164%	0.209	4.393%	0.246
100	4.539%	0.145	6.611%	1.440	6.410%	0.378	5.953%	0.394
200	6.280%	2.001	9.214%	3.411	8.314%	1.293	7.683%	1.594
300	7.903%	10.431	10.515%	12.006	10.087%	4.607	8.714%	7.482
400	12.618%	16.936	12.848%	26.714	13.632%	13.518	10.970%	19.850
500	16.357%	16.947	15.413%	41.227	14.826%	26.705	13.429%	39.125
750	25.783%	16.603	22.553%	102.623	22.187%	90.436	20.956%	111.835
1,000	30.408%	23.321	28.777%	161.183	26.434%	139.826	26.136%	159.042

Maximum runtime: 1 hour

◆ Performance of test-time search method for RCIs



Both the π -greedy method and the GraphCHiP algorithm significantly **increase** the yield of high-quality RCI cuts, resulting in a substantial reduction of the optimality gap.

◆ Performance of GraphCHiP algorithm for FCIs

- A example of an FCI found by GraphCHiP on 'X-n153-k22' instance ($Q = 144$)
- Calculate FCI violation
$$\bar{x}(\delta(H)) + \bar{x}(\delta(S_1)) + \bar{x}(\delta(S_2)) = 44.0 + 10.5 + 11.19 = 65.69$$

$$\geq 2r(\Omega) + 2 \left(\left\lceil \frac{\sum_{i \in S_1} d_i}{Q} \right\rceil + \left\lceil \frac{\sum_{i \in S_2} d_i}{Q} \right\rceil \right) = 2(23 + 5 + 5) = 66$$

- The existence of FCI cuts is highly dependent on the problem structure.
- As a result, adding FCI results in further reduction of the optimality gap.

- We observe the **limitations** and potential improvements of **NeuralSEP** based on three key evaluation metrics.
- We propose a π -greedy method and the GraphCHiP algorithm to generate not only RCIs but also FCIs without retraining the model.
- To our knowledge, this is the **first learning-based approach** to find FCIs.
- The proposed **test-time search method** can be applied to other learning-based algorithms that employ iterative graph coarsening.

Conclusion