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€ Capacitated Vehicle Routing Problem € Motivation
— Overcome the NP-hard exact separation of RCI/FCI, which limits solver scalability.
minimize z CijXij — Replace traditional heuristics (CVRPSEP) with an efficient learning-based algorithm,
({.DEE S NeuralSEP.
subject to x((S({i})) =2 Vi €V, — Fully leverage the trained model's potential by employing a Test-Time Search (TTS)

technique during inference to enhance the performance.

x(6({0})) = 2K
x(6(8))=2r(S) VvVScV

& Overall Structure

xij <1 Vi<i<j< |V
Xgj < 2 Vj €V, (e.g.) a CVRP instance with Cutting Plane Method Employ'NeuralSI.EP as the
. avehicle capacity of 7 separation algorithm
Xij € Ly viev, to serve 9 customers within a cutting plane
where K is the number of available vehicles to serve all customers method to generate valid
Relaxed Capacity Inequalities capacity inequalities (cuts)
=» Too many capacity inequalities = handled via cutting plane methods! optimal solution - Rounded Capacity Inequality ~ for the CVRP, further
x ™ - Framed Capacity Inequality integrating a Test-Time
. egs . . olve .
= Rounded Capacity Inequalities (RCIs) = Framed Capacity Inequalities (FCIs) Separation Problem Search (TTS) technique.
di d(S: by NeuralSEP : :
x(6(5)) = 2 [Z S_} x((S(H)) + 2(5(51')) = 2r(Q) + 2 2 [ (Ql)} (Kim et al., 2024) Mgchme Leaming
lE
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=» Find RCIs and FClIs by using test-time search method in neural graph coarsening!

€ Neural Graph Coarsening Procedures (Kim et al, 2024)

Neural Graph Coarsening Procedures — NeuralSEP learns from the optimal solutions of the exact separation

Y — coarsening problem, encoding the fractional solution (x) and a demand &

4 vehicle-related parameter as graph features for the input.
Pi}iev, Piievy V\S — The GNN predicts probabilities for vertex inclusion, which drive an
— 6NN GNN - iterative graph coarsening process to simplify the graph and
/ S determine the final candidate subset (S).
— Check for the RCI violation of these candidate subsets.
-
€ Limitation of NeuralSEP € Solution: -greedy method
Although NeuralSEP performs effectively in large-scale instances, we observe an issue: Calculate qij = pipj + (1 — pl-)(l — pj) + 7, Vi,j #0 m;; ~ U(0,0.001)
It finds substantially fewer cuts than the exact separation method, despite being trained to imitate it. > Find (i,j) € E that maximizes qi;
Foreachme€ {0, ..., K —1} +y - coarsening € Graph Coarsening History based Partitioning (GraphCHiP) algorithm
Vertex feature h; = (ﬂ ﬂ) ---------- Pl
"T\QK) e GNN ? ? ‘ﬁ
Edge feature hl] = (fl]) ! ! 0C0O0O000O0 i
! ! ! S(m)
(a) Partial Derivative (b) Cosine Similarity (c) Jaccard Coefficient
Here, mis the integer-valued parameter in the exact separation problem.
We utilize three key metrics (including the Jaccard Coefficient) : Q % % H % %
to show that NeuralSEP generates highly similar and thus less %o H |
diverse subsets than the exact separation method. ol i
’ T T Utilize the intermediate records of the graph coarsening to identify the candidate subsets & partitions.

(¢) Metric Ds: Jaccard Coefficient

€ Comparison of RCI separation algorithm € Performance of GraphCHiP algorithm for FCls
= Dataset: Evaluation on Randomly Generated CVRP 1000 ——— . ‘ ,
= Baseline: CVRPSEP, Original NeuralSEP, NeuralSEP with migrated library 05 " Aexample of an FCl found by GraphCHIP on‘X-n153-k22
= Metric: Optimality Gap (%) A pee v - instance (Q = 144)
s = Calculate FCl violation
i ML
Size CVRPSEP NeuralSEP; NeuralSEP- w-NeuralSEP,; + GC ,;;/3,‘_,_*,.--‘.‘:,- S 5(5(1-1)) + 5(5(51)) + 5(5(52)) —44.04+ 1054+ 11.19 = 65.69
Gap Time/Iter Gap Time/Iter Gap Time/Tter Gap  Time/Iter 600- . = ST Yoo di]l [Dicc d;
SN 2 2r(Q) + 2 |2 4 [ ) = 2(23 4+ 5 4 5) = 66
50 | 1.970% 0.009  4.151% 0.830  5.250% 0.120  3.679% 0.133 — 'l . Q Q
75 | 2.769% 0.054  5.305% 1.066  5.164% 0.209  4.393% 0.246 % = The existence of FCI cuts is highly dependent on the
100 | 4.539% 0.145  6.611% 1.440  6.410% 0.378  5.953% 0.394 o ow ) oroblem structure
200 | 6.280% 2.001  9.214% 3.411  8.314% 1.293  7.683% 1.594 ! e o : :
300 | 7.903% 10431 10.515%  12.006 10.087% 4607 8.714% 7.482 " Asaresult, adding FCl results in further reduction of the
400 | 12.618% 16.936 12.848% 26.714 13.632% 13.518 = 10.970% 19.850 optimality gap.
500 | 16.357% 16.947 15.413% 41.227 14.826% 26.705 = 13.429% 39.125
750 | 25.783% 16.603 22.553%  102.623 22.187% 90.436 = 20.956% 111.835 0 | | | |
1,000 | 30.408% 23.321 28.777%  161.183 26.434%  139.826 26.136% 159.042 0

Maximum runtime: 1 hour

€ Performance of test-time search method for RCls
» We observe the limitations and potential improvements of NeuralSEP based on three

Size 400 Size 400

60 —— o i i
S — oemiste) EZ _ ooemitetic | Both the 1 -greedy method and the GraphCHiP key evaluation metrics.
g, | Sl A algorithm significantly increase the yield of high- ¢+ We propose a r-greedy method and the GraphCHiP algorithm to generate not only RCls
> 2 30 quality RCI cuts, resulting in a substantial but also FCIs without retraining the model.
g 301 220 reduction of the optimality gap.
£ 20 2., * To our knowledge, this is the first learning-based approach to find FCls.
O

O e s The proposed test-time search method can be applied to other learning-based

Normalized Iteration (%) Normalized Iteration (%) algorithms that employ iterative graph coarsening




